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Abstract—Catfish aquaculture in Indonesia faces an 
efficiency challenge in its fry counting process, which still 
relies on manual methods. This research aims to develop 
and evaluate a mobile application based on the Android 
operating system that implements the YOLOv5 algorithm 
for the automated, real-time detection and counting of 
catfish fry. The model was trained using an image dataset 
from Roboflow and integrated into an application 
developed with the Flutter framework. The model's 
performance was quantitatively assessed using Precision, 
Recall, and F1-Score metrics across three scenarios: 
normal, clustered (occlusion), and shadowed conditions. 
The test results show that the best performance was 
achieved under normal conditions, with an F1-Score of 
0.949. Performance decreased when the fry was clustered 
(F1-Score of 0.874) due to object occlusion, and also under 
shadowed conditions (F1-Score of 0.786) because of false 
positive detections. These findings confirm the suitability 
of YOLOv5 for fry counting applications on mobile devices 
while also highlighting critical areas for improvement, 
particularly in handling lighting variations and 
overlapping objects. 

Keywords—android; catfish fry; image processing; object 
detection; yolov5. 

 
 
 

1. Introduction 

The catfish (Clarias sp.) is a freshwater fish species with high 
economic value and market demand in Indonesia (Yumna et al., 
2019). Moreover, catfish possess several advantages, such as 
rapid growth, adaptability to poor environmental conditions, 
and high nutritional content (Ciptawati et al., 2021). The 
demand for catfish continues to increase in correspondence 
with population growth and changing consumption patterns, 
which has subsequently affected the growth of catfish 
production (Sitio et al., 2017). Furthermore, the annual growth 
of catfish production averaged 11.77% between 2013 and 2018, 
indicating its significant role in the aquaculture sector 
(Fauziyah et al., 2019). One of the most critical phases in the 
cultivation cycle is fry management, where the counting process 
is a fundamental activity for stock estimation, feed planning, 
and harvest prediction. 

Currently, the method for counting fry among farmers is still 
performed manually. This process is inefficient, labor-intensive, 
and requires a substantial amount of time—it can take 1.5 to 2 
hours to count a single bag containing approximately 2,000 fry. 
Additionally, the accuracy of manual counting is often 
compromised by factors such as the very small size of the fry and 
their constant, agile movements, which increases the potential 
for human error (Dendi & Sunardi, 2021). 
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The rapid advancement of deep learning technology, 
particularly in the field of computer vision, offers a potential 
solution to automate and improve the accuracy of this process. 
Image processing is necessary to obtain the desired information 
from an image, which is a form of information that can be 
analyzed and used by humans (Sulistiyanti et al., 2016). The You 
Only Look Once (YOLO) algorithm is an advanced object 
detection model that has revolutionized real-time detection by 
processing an entire image in a single pass to simultaneously 
generate bounding box coordinates and class probabilities, as 
illustrated in Fig. 1. Several previous studies have demonstrated 
the successful implementation of YOLO for agricultural object 
detection (Arganata et al., 2020; Badgujar et al., 2024), including 
the counting of gourami fry using a webcam. The developed 
system was able to detect and count the fish fry with a detection 
accuracy of 82–85% and a counting accuracy of up to 100% when 
using a mode-based approach. However, a major limitation of 
that research was its reliance on a static platform (a computer), 
which reduces its practicality and mobility for direct use in fish 
farm environments. 

To address this limitation, the present study focuses on the 
development and implementation of a YOLOv5 model 
integrated into a mobile application for the Android operating 
system. The objective is to provide a portable, fast, and accurate 
tool for fish farmers. The main contribution of this research is 
the evaluation of the model's performance under various 
realistic environmental conditions (normal, clustered, and 
shadowed) to measure the system's robustness and identify its 
limitations in practical field application scenarios. 

The results of this study indicate that the developed 
application can achieve excellent detection performance under 
ideal conditions (F1-Score of 0.949), but experiences a 
significant performance decline in more complex situations. 
Specifically, performance decreases when the fry was clustered 
(F1-Score of 0.874) due to failures in detecting overlapping 
objects, and it declines further under shadowed conditions (F1-
Score of 0.786) due to object misidentification. These findings 
provide quantitative evidence of the system's capabilities and 
limitations. 

The remainder of this paper is organized as follows: Section 
2 describes the research methodology, including theoretical 
foundations, model training process, application 
implementation, and testing scenarios. Section 3 presents and 
discusses the detailed test results. Finally, Section 4 summarizes 
the conclusions of this study and provides recommendations for 

future development. 
 

2. Method 

2.1. Theoretical foundation 

2.1.1. You Only Look Once (YOLO) 

YOLO is a family of single-stage object detection algorithms 
designed for speed and efficiency. In the YOLO framework, 
object detection components are placed within a single neural 
network, allowing for end-to-end training while maintaining a 
good level of precision. 

YOLO divides the input image into an S×S grid, where S is 7, 
and the input image size is 448 x 448 pixels, as shown in Fig. 2. 
The process of forming a bounding box is accomplished through 
convolution on the input image. This results in a bounding box 
size of S×S×(B×5 + C), where B is the number of bounding boxes 
(typically 2) in a single grid cell, and C is the number of 
classifiable classes. The value B is multiplied by 5 because each 
bounding box requires storage of five values: the x-coordinate, 
y-coordinate, width, height, and a confidence score (Armalivia 
et al., 2021). Next, the system runs a single convolutional 
network on the image. Finally, the system provides object 
detections based on the confidence level according to the 
trained model. 

 
2.1.2. Convolutional neural network (CNN)  

A CNN is an advancement of the Multilayer Perceptron 
(MLP) specifically designed to process two-dimensional data. 
CNNs are classified as Deep Neural Networks because they have 
a very deep network structure and are frequently applied to 
image data. For image classification tasks, MLPs are less 
effective because they do not preserve the spatial information 
of the image data and treat each pixel as an independent feature, 
which leads to unsatisfactory results (Putra, 2016). 

A CNN is composed of a 3-dimensional arrangement of 
neurons: width, height, and depth. The width and height 
represent the size of the layer, while the depth indicates the 
number of layers in the network. A CNN can have tens to 
hundreds of layers, where each layer is trained to recognize 
specific features in an image. The image processing is applied to 
each training image at different resolutions. The output from 
processing each image is then combined and becomes the input 

 
Fig. 1. Example of bounding box 
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for the next layer. This image processing can start with very 
simple features, such as edge detection, and progress to more 
complex features, such as recognizing faces or specific objects 
(Ilahiyah & Nilogiri, 2018). 

 
2.2. Model training and validation  

The system implementation is a critical phase in project 
development that ensures all designed components can 
function correctly as a whole. An optimal development 
environment setup is the first step toward successful system 
implementation. For this research, Google Colab Pro+ was used 
as the primary development environment; its specifications are 

detailed in Table 1. 
The model training process is an essential stage in the 

development of a machine learning-based system. The use of 
appropriate evaluation metrics is very important for model 
validation. Metrics such as mean Average Precision (mAP), 
precision, and recall were used to measure the performance of 
the YOLOv5 object detection model in this study. The mAP 
metric measures the average precision across various levels of 
recall, while precision and recall measure how well the model 
detects correct objects without producing too many errors. 

In this study, the YOLOv5 model was trained using an image 
dataset of catfish fry obtained from the public repository 
Roboflow. The training process was executed in the Google 
Colab Pro+ cloud computing environment for 50 epochs using 
the PyTorch library. During training, the model's performance 
on the validation dataset was monitored regularly. Fig. 3 shows 
the performance metrics of the best model achieved, with a 
precision value of 0.917, a recall of 0.96, and an mAP@0.5 of 
0.966, indicating the model's excellent generalization capability 
on previously unseen data. 

 
2.3. Implementation on the Android platform  

After training was completed, the best model was exported 
to the TorchScript (. pt) format, which is optimized for inference 
on various platforms, including mobile devices. The Android 
application was then developed using the Flutter framework 

 
Fig. 2. YOLO workflow for object detection 

Table 1. Google Colab Pro+ Specifications 

No. Component             Specification          

1 RAM 334.6 GB    
2 Runtime TPU V2    
3 Operating System Linux    
4 Disk Space 225.3 GB    
5 Programming Language Python 3.10.12    
6 Library PyTorch, OpenCV    
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because of its ability to build a responsive user interface from a 
single codebase. The model integration into the application was 
facilitated by the flutter_pytorch plugin, which provides a bridge 
to load the model and run inference directly on the device's 
hardware. This architecture allows the entire workflow—from 
image capture (via the camera or gallery), the inference process 
by the model, to the visualization of detection results—to run 
completely locally (on-device). As a result, the application can 
function without an internet connection and preserves user data 
privacy. Fig. 4 displays the application's user interface, from the 
main screen to the detection results screen. 

The model file was placed in the assets/models/ directory of 
the Flutter project, along with the label file in assets/labels/. 
During initialization, the model is loaded using the 
FlutterPytorch. loadObjectDetectionModel() function with 
parameters for the model path, number of classes, input size 
(640×640), and the label file. This process is performed once 
when the application is initiated (main. dart). Subsequently, the 
application offers two data source options: the camera 
(camera_screen. dart) and the gallery (gallery_screen. dart). If the 
user selects the camera, each frame is captured using the camera 
plugin. If the gallery is chosen, an image is selected via the 
image_picker plugin. 

The image obtained from the camera or gallery is sent to the 
model through the getImagePrediction() function. The output is 
a list of detected objects, containing bounding box coordinates 

and class labels. The detection results are visualized on the 
application interface by drawing bounding boxes on the image 
and displaying the number of identified fish fry. 

 
Fig. 3. Performance metrics of the best model after 50 epochs 

Table 2. Detailed Test Results of Catfish Fry Detection 

No. Fry Count Condition                Response (ms) TP FN FP 

1 1 normal 2450 1 0 0 
2 2 normal 2545 2 0 0 
3 3 normal 2235 3 0 0 
4 4 normal 1649 4 0 0 
5 4 clustered 1692 3 1 0 
6 5 clustered 1592 5 0 0 
7 5 normal 1657 5 0 0 
8 6 normal 2291 3 3 0 
9 6 normal 1647 5 1 1 
10 6 normal 1675 6 0 0 
11 7 normal 1823 7 0 0 
12 7 Shadow 1965 4 3 3 
13 7 Shadow & 

Clustered 
2124 7 0 0 

14 10 clustered 1990 7 3 0 
15 10 normal 1858 10 0 0 
16 10 clustered 2405 8 2 0 
17 10 clustered 2184 8 1 1 
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2.4. Testing Scenarios and Evaluation Metrics  

To evaluate the application's performance in an 
environment that approximates real-world conditions, testing 
was conducted on 17 images that had not been used in either 
training or validation. These images were selected to represent 
three primary scenarios frequently encountered in the field: 

a. Normal: Good and even lighting, with fry well-distributed 
and no overlapping. 

b. Clustered: Several fry are close together and overlapping, 
causing partial occlusion. 

c. Shadow: Significant shadows are cast over the fry or the 
surrounding area. 

Quantitative performance was measured using standard 
metrics in object detection evaluation: Precision, Recall, and 
F1-Score. 

a. Precision = TP / (TP + FP), which measures the accuracy of 
the detections made. 

b. Recall = TP / (TP + FN), which measures the completeness 
of the detections. 

c. F1-Score = 2 * (Precision * Recall) / (Precision + Recall), 
which is the harmonic mean of Precision and Recall. 

Where TP (True Positive) is the number of fry correctly 
detected, FP (False Positive) is an erroneous detection, and FN 
(False Negative) is the number of existing fry that were missed 

 
Fig. 4. User interface (UI) of the catfish fry detection application 
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by the detector. 
 

3. Results 

This section presents the findings from the application 
testing. A visual example of the detection process is shown in 
Fig. 5 and Fig. 6. In this case, Fig. 5 is the original input image 
containing 10 catfish fry. Fig. 6 shows the application's output, 
where the model successfully detected all 10 fry.  

The comprehensive test results are detailed in Table 2, 
which includes the actual number of fry, the environmental 
condition, and the TP, FN, and FP values for each test image. 

The data from Table 2 were then aggregated by condition to 
calculate the overall performance metrics. Table 3 summarizes 
these calculations. 

 
4. Discussion 

The test results clearly indicate that the model's 
performance is highly dependent on the visual conditions of the 
input image. 

Under normal conditions, the model demonstrated very 
satisfactory performance, achieving an F1-Score of 0.949. As 
seen in Table 3, the high Precision value (0.979) signifies that 
nearly all objects detected were indeed catfish fry. Meanwhile, 

 
Fig. 5. Input image with 10 catfish fry 

 
Fig. 6. Detection result on the application (Count: 10) 

Table 3. Summary of Model Performance per Condition 

Condition Precision Recall 
F1-
Score Brief Qualitative Note 

Normal 0.979 0.920 0.949 Very good performance; 
accurate detection on 
clear images. 

Clustered 0.969 0.795 0.874 Recall decreases 
(missed detections) due 
to occlusion (high FN). 

Shadow 0.786 0.786 0.786 Precision decreases 
(high false positives). 
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the high Recall value (0.920) indicates that the model 
successfully found most of the fry present. This confirms that 
under ideal conditions, the model can function as a reliable 
counting tool. 

A significant challenge arose under clustered conditions, 
where the F1-Score dropped to 0.874. This decline was 
specifically caused by the drop in the Recall value to 0.795. This 
means the model failed to locate a number of fry that were 
present (an increase in False Negatives). This phenomenon 
occurs because several fry overlap one another, causing the 
visual features of each individual to become ambiguous. 

The most challenging condition was the shadow condition, 
where the F1-Score dropped sharply to 0.786. This decline was 
primarily driven by the low Precision value of 0.786, indicating 
that the model generated many incorrect detections (an 
increase in False Positives). It is probable that dark areas or 
high-contrast regions created by shadows were mistakenly 
interpreted by the model as features similar to those of catfish 
fry. 

It should be noted that there was an anomalous result in the 
test with the combined "shadow and clustered" condition (Table 
2, row 13), where the model achieved perfect detection. This 
result contrasts with the model's lower performance under 
simpler, individual conditions. It is suspected that the specific 
image used for this test had unique characteristics that did not 
represent the true challenge of the combined conditions. 
Therefore, this result is considered an outlier. 

 
5. Conclusion 

This research successfully designed and evaluated an 
Android application based on YOLOv5 for the automated 
counting of catfish fry. The application was proven to have 
excellent performance under ideal conditions (F1-Score of 
0.949). However, the study also identified two major 
weaknesses. First, its performance degraded under clustered 
conditions due to occlusion, which caused a decrease in Recall. 
Second, its performance dropped sharply under shadowed 
conditions, which caused a decrease in Precision due to false 
positive detections. 

Based on these findings, future development is 
recommended to focus on several strategic areas. First, 
enriching the training dataset is a priority. This can be done by 
collecting more image data that represent difficult conditions 
and using data augmentation techniques. Second, further 
research could explore image pre-processing methods, such as 
lighting normalization or contrast enhancement. Finally, 
testing on a larger and more standardized dataset is necessary 
to validate the model's generalization and reliability before 
wider implementation. 
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