
https://doi.org/10.32815/jitika.v19i2.1184

114

Abstract—Catfish aquaculture in Indonesia faces an
efficiency challenge in its fry counting process, which still
relies on manual methods. This research aims to develop
and evaluate a mobile application based on the Android
operating system that implements the YOLOv5 algorithm
for the automated, real-time detection and counting of
catfish fry. The model was trained using an image dataset
from Roboflow and integrated into an application
developed with the Flutter framework. The model's
performance was quantitatively assessed using Precision,
Recall, and F1-Score metrics across three scenarios:
normal, clustered (occlusion), and shadowed conditions.
The test results show that the best performance was
achieved under normal conditions, with an F1-Score of
0.949. Performance decreased when the fry was clustered
(F1-Score of 0.874) due to object occlusion, and also under
shadowed conditions (F1-Score of 0.786) because of false
positive detections. These findings confirm the suitability
of YOLOv5 for fry counting applications on mobile devices
while also highlighting critical areas for improvement,
particularly in handling lighting variations and
overlapping objects.

Keywords—android; catfish fry; image processing; object
detection; yolov5.

1. Introduction

The catfish (Clarias sp.) is a freshwater fish species with high
economic value and market demand in Indonesia (Yumna et al.,
2019). Moreover, catfish possess several advantages, such as
rapid growth, adaptability to poor environmental conditions,
and high nutritional content (Ciptawati et al., 2021). The
demand for catfish continues to increase in correspondence
with population growth and changing consumption patterns,
which has subsequently affected the growth of catfish
production (Sitio et al., 2017). Furthermore, the annual growth
of catfish production averaged 11.77% between 2013 and 2018,
indicating its significant role in the aquaculture sector
(Fauziyah et al., 2019). One of the most critical phases in the
cultivation cycle is fry management, where the counting process
is a fundamental activity for stock estimation, feed planning,
and harvest prediction.

Currently, the method for counting fry among farmers is still
performed manually. This process is inefficient, labor-intensive,
and requires a substantial amount of time—it can take 1.5 to 2
hours to count a single bag containing approximately 2,000 fry.
Additionally, the accuracy of manual counting is often
compromised by factors such as the very small size of the fry and
their constant, agile movements, which increases the potential
for human error (Dendi & Sunardi, 2021).

* Corresponding author.
 E-mail Address: mzein@asia.ac.id (M. Zainuddin)

Author E-mail(s): MZ (mzein@asia.ac.id), MSZ (sauzum73@gmail.com)
Digital Object Identifier 10.32815/jitika.v19i2.1184
Manuscript submitted 19 July 2025; revised 25 September 2025; accepted 26 September 2025.
ISSN: 2580-8397(O), 0852-730X(P).

©2025 Jurnal Ilmiah Teknologi Informasi Asia. Published by Institut Teknologi dan Bisnis Asia Malang. This is an open access article distributed
under the Creative Commons Attribution 4.0 International License (CC BY 4.0) (https://creativecommons.org/licenses/by/4.0/).

Volume 19, Issue 2, 2025

Jurnal Ilmiah Teknologi Informasi Asia

Journal Homepage: https://jurnal.asia.ac.id/index.php/jitika

Article

Implementation of the YOLOv5 Algorithm on an Android Platform for counting
catfish fry (clarias sp.)

Mohammad Zainuddin *, Muhammad Saifuddin Zuhri

Teknik Informatika, Institut Teknologi Dan Bisnis Asia Malang, Malang City, 65113, Indonesia

https://doi.org/10.32815/jitika.v19i2.1184
https://jurnal.asia.ac.id/index.php/jitika

Zainuddin et al. Jurnal Ilmiah Teknologi Informasi Asia, Vol. 19 (2), 2025

115

The rapid advancement of deep learning technology,
particularly in the field of computer vision, offers a potential
solution to automate and improve the accuracy of this process.
Image processing is necessary to obtain the desired information
from an image, which is a form of information that can be
analyzed and used by humans (Sulistiyanti et al., 2016). The You
Only Look Once (YOLO) algorithm is an advanced object
detection model that has revolutionized real-time detection by
processing an entire image in a single pass to simultaneously
generate bounding box coordinates and class probabilities, as
illustrated in Fig. 1. Several previous studies have demonstrated
the successful implementation of YOLO for agricultural object
detection (Arganata et al., 2020; Badgujar et al., 2024), including
the counting of gourami fry using a webcam. The developed
system was able to detect and count the fish fry with a detection
accuracy of 82–85% and a counting accuracy of up to 100% when
using a mode-based approach. However, a major limitation of
that research was its reliance on a static platform (a computer),
which reduces its practicality and mobility for direct use in fish
farm environments.

To address this limitation, the present study focuses on the
development and implementation of a YOLOv5 model
integrated into a mobile application for the Android operating
system. The objective is to provide a portable, fast, and accurate
tool for fish farmers. The main contribution of this research is
the evaluation of the model's performance under various
realistic environmental conditions (normal, clustered, and
shadowed) to measure the system's robustness and identify its
limitations in practical field application scenarios.

The results of this study indicate that the developed
application can achieve excellent detection performance under
ideal conditions (F1-Score of 0.949), but experiences a
significant performance decline in more complex situations.
Specifically, performance decreases when the fry was clustered
(F1-Score of 0.874) due to failures in detecting overlapping
objects, and it declines further under shadowed conditions (F1-
Score of 0.786) due to object misidentification. These findings
provide quantitative evidence of the system's capabilities and
limitations.

The remainder of this paper is organized as follows: Section
2 describes the research methodology, including theoretical
foundations, model training process, application
implementation, and testing scenarios. Section 3 presents and
discusses the detailed test results. Finally, Section 4 summarizes
the conclusions of this study and provides recommendations for

future development.

2. Method

2.1. Theoretical foundation

2.1.1. You Only Look Once (YOLO)

YOLO is a family of single-stage object detection algorithms
designed for speed and efficiency. In the YOLO framework,
object detection components are placed within a single neural
network, allowing for end-to-end training while maintaining a
good level of precision.

YOLO divides the input image into an S×S grid, where S is 7,
and the input image size is 448 x 448 pixels, as shown in Fig. 2.
The process of forming a bounding box is accomplished through
convolution on the input image. This results in a bounding box
size of S×S×(B×5 + C), where B is the number of bounding boxes
(typically 2) in a single grid cell, and C is the number of
classifiable classes. The value B is multiplied by 5 because each
bounding box requires storage of five values: the x-coordinate,
y-coordinate, width, height, and a confidence score (Armalivia
et al., 2021). Next, the system runs a single convolutional
network on the image. Finally, the system provides object
detections based on the confidence level according to the
trained model.

2.1.2. Convolutional neural network (CNN)

A CNN is an advancement of the Multilayer Perceptron
(MLP) specifically designed to process two-dimensional data.
CNNs are classified as Deep Neural Networks because they have
a very deep network structure and are frequently applied to
image data. For image classification tasks, MLPs are less
effective because they do not preserve the spatial information
of the image data and treat each pixel as an independent feature,
which leads to unsatisfactory results (Putra, 2016).

A CNN is composed of a 3-dimensional arrangement of
neurons: width, height, and depth. The width and height
represent the size of the layer, while the depth indicates the
number of layers in the network. A CNN can have tens to
hundreds of layers, where each layer is trained to recognize
specific features in an image. The image processing is applied to
each training image at different resolutions. The output from
processing each image is then combined and becomes the input

Fig. 1. Example of bounding box

Zainuddin et al. Jurnal Ilmiah Teknologi Informasi Asia, Vol. 19 (2), 2025

116

for the next layer. This image processing can start with very
simple features, such as edge detection, and progress to more
complex features, such as recognizing faces or specific objects
(Ilahiyah & Nilogiri, 2018).

2.2. Model training and validation

The system implementation is a critical phase in project
development that ensures all designed components can
function correctly as a whole. An optimal development
environment setup is the first step toward successful system
implementation. For this research, Google Colab Pro+ was used
as the primary development environment; its specifications are

detailed in Table 1.
The model training process is an essential stage in the

development of a machine learning-based system. The use of
appropriate evaluation metrics is very important for model
validation. Metrics such as mean Average Precision (mAP),
precision, and recall were used to measure the performance of
the YOLOv5 object detection model in this study. The mAP
metric measures the average precision across various levels of
recall, while precision and recall measure how well the model
detects correct objects without producing too many errors.

In this study, the YOLOv5 model was trained using an image
dataset of catfish fry obtained from the public repository
Roboflow. The training process was executed in the Google
Colab Pro+ cloud computing environment for 50 epochs using
the PyTorch library. During training, the model's performance
on the validation dataset was monitored regularly. Fig. 3 shows
the performance metrics of the best model achieved, with a
precision value of 0.917, a recall of 0.96, and an mAP@0.5 of
0.966, indicating the model's excellent generalization capability
on previously unseen data.

2.3. Implementation on the Android platform

After training was completed, the best model was exported
to the TorchScript (. pt) format, which is optimized for inference
on various platforms, including mobile devices. The Android
application was then developed using the Flutter framework

Fig. 2. YOLO workflow for object detection

Table 1. Google Colab Pro+ Specifications

No. Component Specification

1 RAM 334.6 GB
2 Runtime TPU V2
3 Operating System Linux
4 Disk Space 225.3 GB
5 Programming Language Python 3.10.12
6 Library PyTorch, OpenCV

Zainuddin et al. Jurnal Ilmiah Teknologi Informasi Asia, Vol. 19 (2), 2025

117

because of its ability to build a responsive user interface from a
single codebase. The model integration into the application was
facilitated by the flutter_pytorch plugin, which provides a bridge
to load the model and run inference directly on the device's
hardware. This architecture allows the entire workflow—from
image capture (via the camera or gallery), the inference process
by the model, to the visualization of detection results—to run
completely locally (on-device). As a result, the application can
function without an internet connection and preserves user data
privacy. Fig. 4 displays the application's user interface, from the
main screen to the detection results screen.

The model file was placed in the assets/models/ directory of
the Flutter project, along with the label file in assets/labels/.
During initialization, the model is loaded using the
FlutterPytorch. loadObjectDetectionModel() function with
parameters for the model path, number of classes, input size
(640×640), and the label file. This process is performed once
when the application is initiated (main. dart). Subsequently, the
application offers two data source options: the camera
(camera_screen. dart) and the gallery (gallery_screen. dart). If the
user selects the camera, each frame is captured using the camera
plugin. If the gallery is chosen, an image is selected via the
image_picker plugin.

The image obtained from the camera or gallery is sent to the
model through the getImagePrediction() function. The output is
a list of detected objects, containing bounding box coordinates

and class labels. The detection results are visualized on the
application interface by drawing bounding boxes on the image
and displaying the number of identified fish fry.

Fig. 3. Performance metrics of the best model after 50 epochs

Table 2. Detailed Test Results of Catfish Fry Detection

No. Fry Count Condition Response (ms) TP FN FP

1 1 normal 2450 1 0 0
2 2 normal 2545 2 0 0
3 3 normal 2235 3 0 0
4 4 normal 1649 4 0 0
5 4 clustered 1692 3 1 0
6 5 clustered 1592 5 0 0
7 5 normal 1657 5 0 0
8 6 normal 2291 3 3 0
9 6 normal 1647 5 1 1
10 6 normal 1675 6 0 0
11 7 normal 1823 7 0 0
12 7 Shadow 1965 4 3 3
13 7 Shadow &

Clustered
2124 7 0 0

14 10 clustered 1990 7 3 0
15 10 normal 1858 10 0 0
16 10 clustered 2405 8 2 0
17 10 clustered 2184 8 1 1

Zainuddin et al. Jurnal Ilmiah Teknologi Informasi Asia, Vol. 19 (2), 2025

118

2.4. Testing Scenarios and Evaluation Metrics

To evaluate the application's performance in an
environment that approximates real-world conditions, testing
was conducted on 17 images that had not been used in either
training or validation. These images were selected to represent
three primary scenarios frequently encountered in the field:

a. Normal: Good and even lighting, with fry well-distributed
and no overlapping.

b. Clustered: Several fry are close together and overlapping,
causing partial occlusion.

c. Shadow: Significant shadows are cast over the fry or the
surrounding area.

Quantitative performance was measured using standard
metrics in object detection evaluation: Precision, Recall, and
F1-Score.

a. Precision = TP / (TP + FP), which measures the accuracy of
the detections made.

b. Recall = TP / (TP + FN), which measures the completeness
of the detections.

c. F1-Score = 2 * (Precision * Recall) / (Precision + Recall),
which is the harmonic mean of Precision and Recall.

Where TP (True Positive) is the number of fry correctly
detected, FP (False Positive) is an erroneous detection, and FN
(False Negative) is the number of existing fry that were missed

Fig. 4. User interface (UI) of the catfish fry detection application

Zainuddin et al. Jurnal Ilmiah Teknologi Informasi Asia, Vol. 19 (2), 2025

119

by the detector.

3. Results

This section presents the findings from the application
testing. A visual example of the detection process is shown in
Fig. 5 and Fig. 6. In this case, Fig. 5 is the original input image
containing 10 catfish fry. Fig. 6 shows the application's output,
where the model successfully detected all 10 fry.

The comprehensive test results are detailed in Table 2,
which includes the actual number of fry, the environmental
condition, and the TP, FN, and FP values for each test image.

The data from Table 2 were then aggregated by condition to
calculate the overall performance metrics. Table 3 summarizes
these calculations.

4. Discussion

The test results clearly indicate that the model's
performance is highly dependent on the visual conditions of the
input image.

Under normal conditions, the model demonstrated very
satisfactory performance, achieving an F1-Score of 0.949. As
seen in Table 3, the high Precision value (0.979) signifies that
nearly all objects detected were indeed catfish fry. Meanwhile,

Fig. 5. Input image with 10 catfish fry

Fig. 6. Detection result on the application (Count: 10)

Table 3. Summary of Model Performance per Condition

Condition Precision Recall
F1-
Score Brief Qualitative Note

Normal 0.979 0.920 0.949 Very good performance;
accurate detection on
clear images.

Clustered 0.969 0.795 0.874 Recall decreases
(missed detections) due
to occlusion (high FN).

Shadow 0.786 0.786 0.786 Precision decreases
(high false positives).

Zainuddin et al. Jurnal Ilmiah Teknologi Informasi Asia, Vol. 19 (2), 2025

120

the high Recall value (0.920) indicates that the model
successfully found most of the fry present. This confirms that
under ideal conditions, the model can function as a reliable
counting tool.

A significant challenge arose under clustered conditions,
where the F1-Score dropped to 0.874. This decline was
specifically caused by the drop in the Recall value to 0.795. This
means the model failed to locate a number of fry that were
present (an increase in False Negatives). This phenomenon
occurs because several fry overlap one another, causing the
visual features of each individual to become ambiguous.

The most challenging condition was the shadow condition,
where the F1-Score dropped sharply to 0.786. This decline was
primarily driven by the low Precision value of 0.786, indicating
that the model generated many incorrect detections (an
increase in False Positives). It is probable that dark areas or
high-contrast regions created by shadows were mistakenly
interpreted by the model as features similar to those of catfish
fry.

It should be noted that there was an anomalous result in the
test with the combined "shadow and clustered" condition (Table
2, row 13), where the model achieved perfect detection. This
result contrasts with the model's lower performance under
simpler, individual conditions. It is suspected that the specific
image used for this test had unique characteristics that did not
represent the true challenge of the combined conditions.
Therefore, this result is considered an outlier.

5. Conclusion

This research successfully designed and evaluated an
Android application based on YOLOv5 for the automated
counting of catfish fry. The application was proven to have
excellent performance under ideal conditions (F1-Score of
0.949). However, the study also identified two major
weaknesses. First, its performance degraded under clustered
conditions due to occlusion, which caused a decrease in Recall.
Second, its performance dropped sharply under shadowed
conditions, which caused a decrease in Precision due to false
positive detections.

Based on these findings, future development is
recommended to focus on several strategic areas. First,
enriching the training dataset is a priority. This can be done by
collecting more image data that represent difficult conditions
and using data augmentation techniques. Second, further
research could explore image pre-processing methods, such as
lighting normalization or contrast enhancement. Finally,
testing on a larger and more standardized dataset is necessary
to validate the model's generalization and reliability before
wider implementation.

Data Availability

All data generated or analyzed during the study are available
within this article.

Declaration of Conflict of Interest

The authors declare that they have no known conflicts of
interest or personal relationships that could have appeared to
influence the work reported in this paper.

Author Contributions

All authors designed the article, contributed to content
writing, and revised the manuscript. MZ was the lead author of
the first draft of the manuscript, and MSZ revised the
manuscript. All authors read and approved the final version of
the manuscript.

References

Arganata, A. R., Rasmana, S. T., & Kusumawati, W. I. (2020). Analisis
Perhitungan Bibit Ikan Gurame Menggunakan Webcam dengan
Metode Yolo (You Only Look Once).
https://repository.dinamika.ac.id/id/eprint/5195/

Armalivia, S., Zainuddin, M. S., & MT., P. D. I. A. (2021). Penghitungan
Otomatis Larva Udang Menggunakan Metode Yolo.
https://repository.unhas.ac.id/id/eprint/12479/

Badgujar, C. M., Poulose, A., & Gan, H. (2024). Agricultural Object
Detection with You Look Only Once (YOLO) Algorithm: A
Bibliometric and Systematic Literature Review. ArXiv.
https://doi.org/10.48550/arXiv.2401.10379

Dendi, A. S., & Sunardi, S. (2021). Alat Penghitung Benih Ikan Lele
Menggunakan Pengolahan Citra. http://repository.polman-
babel.ac.id/id/eprint/350/

Putra, W. S. E. (2016). Klasifikasi Citra Menggunakan Convolutional
Neural Network (CNN) pada Caltech 101. Jurnal Teknik ITS, 5(1).
https://doi.org/10.12962/j23373539.v5i1.15696

Fauziyah, N., Nirmala, K., Supriyono, E., & Hadiroseyani, Y. (2019).
Evaluasi Sistem Budidaya Lele: Aspek Produksi dan Strategi
Pengembangannya (Studi Kasus: Pembudidaya Lele Kabupaten
Tangerang). Jurnal Kebijakan Sosial Ekonomi Kelautan Dan
Perikanan, 9(2), 129. https://doi.org/10.15578/jksekp.v9i2.7764

Ilahiyah, S., & Nilogiri, A. (2018). Implementasi Deep Learning Pada
Identifikasi Jenis Tumbuhan Berdasarkan Citra Daun
Menggunakan Convolutional Neural Network. JUSTINDO (Jurnal
Sistem dan Teknologi Informasi Indonesia), 3(2), 49–56.
https://doi.org/10.32528/justindo.v3i2.2254

Ciptawati, E., Budi Rachman, I., Oktiyani Rusdi, H., & Alvionita, M.
(2021). Analisis Perbandingan Proses Pengolahan Ikan Lele
terhadap Kadar Nutrisinya. IJCA (Indonesian Journal of Chemical
Analysis), 4(1), 40–46.
https://doi.org/10.20885/ijca.vol4.iss1.art5

Sitio, M. H. F., Jubaedah, D., & Syaifudin, M. (2017). Kelangsungan
Hidup dan Pertumbuhan Benih Ikan Lele (Clarias sp.) Pada
Salinitas Media yang Berbeda. Jurnal Akuakultur Rawa Indonesia,
5(1), 83–96. https://doi.org/10.36706/jari.v5i1.5810

Sulistiyanti, S., Setyawan, F. A., & Komarudin, M. (2016). Pengolahan
Citra Dasar dan Contoh Penerapannya. Teknosain.
https://www.researchgate.net/profile/Muhamad-
Komarudin/publication/337928062_PENGOLAHAN_CITRA_DAS
AR_DAN_CONTOH_PENERAPANNYA/links/67f71aa495231d5ba
5bd8e5f/PENGOLAHAN-CITRA-DASAR-DAN-CONTOH-
PENERAPANNYA.pdf

Yumna, A. S., Rukmono, D., Panjaitan, A. S., & Mulyono, M. (2019).
Penigkatan Produktifitas Ikan Lele (Clarias sp.) Sistem Bioflok
Di Pesantren Modern Darul Ma’arif Legok, Indramayu. Jurnal
Kelautan Dan Perikanan Terapan (JKPT), 2(2), 113.
https://doi.org/10.15578/jkpt.v2i2.8080

Mohammad Zainuddin received a
Master's degree in Informatics Engineering
from Dian Nuswantoro University,
Semarang, in 2017. He currently serves as a
Lecturer in the Informatics Engineering
Study Program at the ASIA Institute of
Technology and Business Malang.

Zainuddin et al. Jurnal Ilmiah Teknologi Informasi Asia, Vol. 19 (2), 2025

121

Muhammad Saifuddin Zuhri. earned a
Bachelor of Computer Science degree from
the ASIA Institute of Technology and
Business, Malang, in 2024. He is currently
working as a Full-stack Developer at PT.
Mulia Bagus Digital. His research interests
include computer vision and mobile
application development.

	1. Introduction
	2. Method
	2.1. Theoretical foundation
	2.1.1. You Only Look Once (YOLO)
	2.1.2. Convolutional neural network (CNN)

	2.2. Model training and validation
	2.3. Implementation on the Android platform
	2.4. Testing Scenarios and Evaluation Metrics

	3. Results
	4. Discussion
	5. Conclusion
	Data Availability
	Declaration of Conflict of Interest
	Author Contributions
	References

