Segmenting perceptions of social media's impact on MSMEs using K-means

Authors

  • Mayang Anglingsari Putri Information Systems Study Program, Faculty of Science and Technology, Universitas Terbuka, Tangerang Selatan, 15148, Indonesia
  • Denisha Trihapningsari Information Systems Study Program, Faculty of Science and Technology, Universitas Terbuka, Tangerang Selatan, 15148, Indonesia
  • Hasan Basri Information Systems Study Program, Faculty of Science and Technology, Universitas Terbuka, Tangerang Selatan, 15148, Indonesia
  • Mochamad Bagoes Satria Julianto Information Systems Study Program, Faculty of Science and Technology, Universitas Terbuka, Tangerang Selatan, 15148, Indonesia
  • Irpan Kusyadi Information Systems Study Program, Faculty of Science and Technology, Universitas Terbuka, Tangerang Selatan, 15148, Indonesia

DOI:

https://doi.org/10.32815/jitika.v19i2.1188

Keywords:

digital marketing, k-means clustering, msme, perception segmentation, social media

Abstract

The rapid growth of social media usage has significantly influenced the marketing and development strategies of Micro, Small, and Medium Enterprises (MSMEs). However, there remains a limited understanding of how various users perceive the role of social media in supporting MSME growth. This study aims to segment user perceptions regarding the impact of social media on MSMEs, utilizing the K-Means Clustering method. The research novelty lies in combining perceptual analysis with an unsupervised machine learning technique to discover hidden patterns in public responses. Data were collected through a questionnaire distributed to MSME actors and users of MSME products across Indonesia. The questionnaire includes statements related to the accessibility, promotional effectiveness, and trust-building capability of social media. The clustering results categorize respondents into several perception groups—ranging from highly positive to neutral or skeptical, providing valuable insights for stakeholders and digital marketing strategists in targeting communication and support for MSMEs. This approach offers a data-driven strategy to optimize MSME empowerment through the appropriate use of digital platforms.

Downloads

Download data is not yet available.

References

Afifah, A. F., Setiawan, R. T., Abdullah, V. S. N. H., Febriana, Z. A., & Supriyono, S. (2025). Pengaruh Media Sosial terhadap Penjualan UMKM. Jurnal Pendidikan Tambusai, 9(1), 1285–1290. https://jptam.org/index.php/jptam/article/view/24372

Amelia, M., Faqih, A., & Rinaldi, A. R. (2025). Penerapan Metode K-Means Clustering dalam Pemetaan Kemiskinan Kabupaten/Kota di Indonesia untuk Perencanaan Kebijakan yang Tepat. Jurnal Informatika Dan Teknik Elektro Terapan, 13(2). https://doi.org/10.23960/jitet.v13i2.6231

Darmawan, S. A. D., & Karmilasari. (2024). Penerapan Metode K-Means Clustering dan Simple Moving Average untuk Memprediksi Jenis Penyakit di Provinsi Jawa Timur. Jurnal Teknologi Informasi Dan Ilmu Komputer, 11(4), 877–886. https://doi.org/10.25126/jtiik.1148703

Ramadana, F. D., Pratama, W. P., Yogario, C. L., Khohar, A., & Setiawan, I. (2025). Implementasi Algoritma K-Means Clustering terhadap Tingkat Kepuasan Peserta LKP Multi Talenta Komputer Purwokerto. Mars : Jurnal Teknik Mesin, Industri, Elektro Dan Ilmu Komputer, 3(1), 184–193. https://doi.org/10.61132/mars.v3i1.675

Gustientiedina, G., Adiya, M. H., & Desnelita, Y. (2019). Penerapan Algoritma K-Means Untuk Clustering Data Obat-Obatan. Jurnal Nasional Teknologi Dan Sistem Informasi, 5(1), 17–24. https://doi.org/10.25077/TEKNOSI.v5i1.2019.17-24

Khumairo’, H., Hersiyah, H., & Mashudi, M. (2025). Peran UMKM Dalam Mendorong Pertumbuhan Ekonomi dan Pemerataan Pendapatan Di Indonesia. Ekonomipedia: Jurnal Ekonomi Manajemen Dan Bisnis, 3(1). https://journals.gesociety.org/index.php/ekonomipedia/article/view/274

Kusyadi, I., Putri, M. A., Satria, M. B., & Trihapningsari, D. (2025). Implementation of the K-Means Algorithm to Determine the Classification of River Water Quality in Jakarta Based on Chemical Parameters. Proceeding International Seminar of Science and Technology, 4, 102–109. https://doi.org/10.33830/isst.v4i1.5236

Nabila, Z., Isnain, A. R., Permata, P., & Abidin, Z. (2021). Analisis Data Mining untuk Clustering Kasus COVID-19 di Provinsi Lampung dengan Algoritma K-Means. Jurnal Teknologi Dan Sistem Informasi (JTSI), 2(2). https://jim.teknokrat.ac.id/index.php/sisteminformasi/article/view/868

Wahyuni, S. (2024). Digital Marketing Strategy on Increasing Transaction Volume in MSMEs in the Post-Pandemic Era. International Journal of Economics and Management Research, 3(3), 450–461. https://doi.org/10.55606/ijemr.v3i3.503

Suyadi, S., Syahdanur, S., & Suryani, S. (2018). Analisis Pengembangan Usaha Mikro Kecil dan Menengah (UMKM) di Kabupaten Bengkalis - Riau. Jurnal Ekonomi KIAT, 29(1). https://journal.uir.ac.id/index.php/kiat/article/view/2736

Valentina, M. febri, Putri suci guntari, Sella Jofilla, Abdul gani, Ecsa Triyadi Ramadon, M. Ammar Albarra, & Pujianto. (2025). Penerapan Algoritma K-Means Clustering untuk Analisis Pola Penjualan Toko Kue dengan RapidMiner. Jurnal Mahasiswa Ilmu Komputer, 6(1), 24–34. https://doi.org/10.24127/ilmukomputer.v6i1.7768

Veranita, M., Almamalik, L., & Ikhsan, S. (2022). Pemanfaatan Pemasaran Melalui Media Sosial oleh UMKM Di Era Pandemi (Studi Kasus pada Usaha Mikro, Kecil, Dan Menengah di Kabupaten Bandung). Coopetition : Jurnal Ilmiah Manajemen, 13(1), 89–96. https://doi.org/10.32670/coopetition.v13i1.590

Published

15-09-2025

How to Cite

Putri, M. A., Trihapningsari, D., Basri, H., Julianto, M. B. S., & Kusyadi, I. (2025). Segmenting perceptions of social media’s impact on MSMEs using K-means. Jurnal Ilmiah Teknologi Informasi Asia, 19(2), 105–113. https://doi.org/10.32815/jitika.v19i2.1188