Metode Pohon Klasifikasi pada Data Respon Biner
Kata Kunci:
Nonparametrik, Metode Pohon Klasifikasi, Neonates, Data BinerAbstrak
Pelanggaran terhadap asumsi dalam metode parametrik menyebabkan suatu data tidak dapat dianalisis dengan metode yang dilandasi asumsi tersebut, namun dalam kenyataannya data tersebut perlu dianalisis karena ingin diperoleh informasi yang terdapat dalam data. Oleh karena itu digunakan metode nonparametrik sehingga data tersebut dapat dianalisis dan diperoleh informasi yang bermanfaat. Metode pohon klasifikasi merupakan metode nonparametrik yang dapat digunakan untuk menduga dan mengelompokkan suatu obyek ke dalam salah satu kategori peubah respon. Metode ini dapat digunakan untuk mencari peubah yang berpengaruh terhadap kematian dini pada neonatus (bayi yang baru lahir) dan membentuk model pohon klasifikasi. Model pohon optimal digunakan sebagai model untuk pendugaan terhadap status neonatus karena model ini memiliki struktur pohon yang sederhana dan memiliki tingkat kesalahan relatif validasi silang lipat-10 yang lebih kecil dari pada model pohon maksimal, yaitu masing-masing sebesar 0,383 dan 0,586. Dari 3 peubah prediktor yang terdapat dalam data, hanya berat lahir (X1)
dan skor apgar (X2) yang mempengaruhi pembetukan model. Neonatus yang memiliki berat lahir lebih dari
2027,5 gram dan memiliki skor apgar 2 atau 6 atau 7 dikategorikan neonatus akan tetap hidup dengan
peluang sebesar 0,958.
Unduhan
Unduhan
Diterbitkan
Terbitan
Bagian
Lisensi
Penulis mengirimkan naskah dan pengertian bahwa jika diterima untuk proses dipublikasi, hak cipta dari artikel tersebut akan diberikan kepada jurnal ilmiah teknologi informasi asia. Jurnal ilmiah teknologi informasi asia dan Lp2m Stmik Asia Malang sebagai penerbit jurnal, komponen Hak cipta mencakup hak untuk mereproduksi dan mengirimkan artikel dalam semua bentuk dan media, termasuk cetak ulang, foto, mikrofilm, dan reproduksi serupa lainnya, serta terjemahannya.
Jurnal ilmiah teknologi infomasi asia, dan Lp2m Stmik Asia Malang, beserta jajaran para redaksi berusaha keras untuk memastikan bahwa tidak ada data, opini, pernyataan yang salah atau menyesatkan ketika dipublikasikan di jurnal, dengan kondisi apapun, isi artikel dan iklan yang diterbitkan di Jurnal ilmiah teknologi infomasi asia adalah murni merupakan tanggung jawab masing-masing penulis dan pengiklan. Pengguna situs web ini akan dilisensikan dengan menggunakan materi dari situs web ini setelah Lisensi Internasional Creative Commons Attribution 4.0. Tidak ada biaya yang dibebankan. Silakan gunakan materi yang sesuai.
Anda bebas untuk:
Bagikan - salin dan sebarkan materi dalam media atau format apa pun
Adaptasi - remix, transformasikan, dan bangun berdasarkan materi untuk tujuan apa pun, bahkan secara komersial.
Pemberi lisensi tidak dapat mencabut kebebasan ini selama Anda mengikuti ketentuan lisensi