Metode Pohon Klasifikasi pada Data Respon Biner
Kata Kunci:
Nonparametrik, Metode Pohon Klasifikasi, Neonates, Data BinerAbstrak
Pelanggaran terhadap asumsi dalam metode parametrik menyebabkan suatu data tidak dapat dianalisis dengan metode yang dilandasi asumsi tersebut, namun dalam kenyataannya data tersebut perlu dianalisis karena ingin diperoleh informasi yang terdapat dalam data. Oleh karena itu digunakan metode nonparametrik sehingga data tersebut dapat dianalisis dan diperoleh informasi yang bermanfaat. Metode pohon klasifikasi merupakan metode nonparametrik yang dapat digunakan untuk menduga dan mengelompokkan suatu obyek ke dalam salah satu kategori peubah respon. Metode ini dapat digunakan untuk mencari peubah yang berpengaruh terhadap kematian dini pada neonatus (bayi yang baru lahir) dan membentuk model pohon klasifikasi. Model pohon optimal digunakan sebagai model untuk pendugaan terhadap status neonatus karena model ini memiliki struktur pohon yang sederhana dan memiliki tingkat kesalahan relatif validasi silang lipat-10 yang lebih kecil dari pada model pohon maksimal, yaitu masing-masing sebesar 0,383 dan 0,586. Dari 3 peubah prediktor yang terdapat dalam data, hanya berat lahir (X1)
dan skor apgar (X2) yang mempengaruhi pembetukan model. Neonatus yang memiliki berat lahir lebih dari
2027,5 gram dan memiliki skor apgar 2 atau 6 atau 7 dikategorikan neonatus akan tetap hidup dengan
peluang sebesar 0,958.
Unduhan
File Tambahan
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Setelah diterima untuk publikasi, penulis mengalihkan hak cipta artikel mereka kepada Jurnal Ilmiah Teknologi Informasi Asia. Ini mencakup hak untuk mereproduksi, mentransmisikan, dan menerjemahkan materi dalam bentuk atau medium apa pun.
Sementara dewan redaksi berusaha memastikan keakuratan, mereka tidak bertanggung jawab atas isi artikel atau iklan. Tanggung jawab sepenuhnya berada pada penulis dan pengiklan masing-masing.
Materi di situs web dilisensikan di bawah Creative Commons Attribution 4.0 International License (CC BY 4.0). Di bawah lisensi ini, pengguna bebas untuk berbagi dan menyesuaikan materi untuk tujuan apa pun, termasuk penggunaan komersial, asalkan persyaratan lisensi terpenuhi. Kebebasan ini tidak dapat dicabut oleh pemberi lisensi dalam kondisi tersebut.