Penerapan Data Mining Untuk Clustering Penilaian Kinerja Dosen Menggunakan Algoritma K-Means (Studi Kasus: STMIK Primakara)
DOI:
https://doi.org/10.32815/jitika.v16i2.761Keywords:
Penilaian Kinerja dosen, KDD, Data mining clustering, K-Means, DBIAbstract
ABSTRACT. Lecturer performance appraisal is a process in evaluating lecturer performance and lecturer work output. This research was conducted to classify the performance of lecturers by utilizing data mining techniques. This study aims to facilitate the provision of information and evaluation to lecturers and as a decision-making material. The research method used is the Knowledge Discovery in Database (KDD) method, which consists of the following stages: Data Selection, Preprocessing/Cleaning, Data Transformation, Data mining, and Enterpretation/Evaluation. The application of the method used in this study is the K-Means Clustering algorithm. The steps taken in analyzing and classifying performance start with several centroid values from a random center point. The K-Means algorithm process ends if there is no change in the centroid value between one iteration and another. The test was carried out using the RapidMiner Studio 9.10 application and using the Davies-Bouldin Index (DBI) evaluation with 983 data input data, so that the results of the lecturer performance assessment were based on student satisfaction, namely very good cluster 312 (31.74%) student data, good cluster 401 (40.79%) student data, cluster data is quite good 189 (19.23%) student data, and cluster data is not good 81 (8.24%) student data. And the DBI result is 0.270 or 27%, so the accuracy of the cluster results is good, because the DBI value is close to zero.
Keywords: Lecturer performance assessment, KDD, Data mining Clustering, K-Means, DBI
Downloads
References
Parlambang, Bagas, and Fauziah. 2020. “Implementasi Algoritma K-Means Dalam Proses Penilaian Kuesioner Kepada Dosen Guna Mendukung Kepuasan Mahasiswa Terhadap Dosen.” Jurnal Ilmiah Teknologi Dan Rekayasa 25(2):161–73. doi: 10.35760/tr.2020.v25i2.2719.
Puspita, Mita, I. Wyn Rinda, and I. Wyn Darsana. 2014. “Kinerja Terhadap Hasil Belajar Ipa Siswa Kelas V Pada Gugus 7 Kecamatan Penebel Kabupaten Tabanan.” Mimbar PGSD Universitas Pendidikan Ganesha Jurusan PGSD (Vol: 2 No: 1 Tahun 2014) 2.
Toyib, Rozali, and Surya Ade Saputera. 2019. “Aplikasi Sistem Penilaian Kinerja Guru Dengan Metode Decision Tree Menggunakan Algoritma ID3 ( Studi Kasus SLTP Negeri 3 Marga Sakti Bengkulu Utara ).” JTIS, Volume 2 Nomor 1, Februari 2019 ISSN : 2614 – 3070, E-ISSN : 2614 – 3089 2:1–7.
Virgo, Ismail, Sarjon Defit, and Yuhandri Yunus. 2020. “Klasterisasi Tingkat Kehadiran Dosen Menggunakan Algoritma K-Means Clustering (Studi Kasus Institut Agama Islam Batusangkar).” Jurnal Sistim Informasi Dan Teknologi 2(1):24–29. doi: 10.37034/jsisfotek.v2i1.22.
Wafa, Moh. Shohibul. 2013. “Evaluasi Kinerja Akademik Mahasiswa Menggunakan Algoritma K-Means Clustering.” Universitas Islam Negeri Maulana Malik Ibrahim Malang 1:1–117.
Additional Files
Published
How to Cite
Issue
Section
License
Upon acceptance for publication, authors transfer copyright of their article to Jurnal Ilmiah Teknologi Informasi Asia. This includes the rights to reproduce, transmit, and translate the material in any form or medium.
While the editorial board endeavors to ensure accuracy, they accept no responsibility for the content of articles or advertisements. Liability rests solely with the respective authors and advertisers.
Website material is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). Under this license, users are free to share and adapt the material for any purpose, including commercial use, provided license terms are met. These freedoms are irrevocable by the licensor under such conditions.