Perbandingan 4 Algoritma Berbasis Particle Swarm Optimization (PSO) Untuk Prediksi Kelulusan Tepat Waktu Mahasiswa
Keywords:
Algoritma Naive Bayes, Decision Tree(C4.5), k-Nearest Neighbor(k-NN), Neural Network, Particle Swarm Optimization(PSO), keakurasian, Area Under the Curve(AUC)Abstract
The purpose of this study was to find the best algorithm in making predictions of students' graduation from 4 algorithms: Naive Bayes Algorithm, Decision Tree (C4.5), k-Nearest Neighbor (kNN), Neural Network based Particle Swarm Optimization (PSO) as references to make policies and academic acts (BAAK) in reducing students who graduated late and did not pass. The results show that PSO-k-Nearest Neighbor (k-NN) algorithm based on k-optimum = 19 has the best performance of 4 algorithms, with Accuracy = 74,08% and Area Under the Curve (AUC) = 0,788. The addition of the Particle Swarm Optimization (PSO) feature always increases the accuracy value, where the highest accuracy value lies in the Decision Tree Algorithm (C4.5) of 5.21%, the lowest on the Naive Bayes Algorithm of 2.13%.
Downloads
References
Asif R., Agathe M., Mahmood KP. (2015). Predicting Student Academic Performance at Degree Level: A Case Study. I.J. Intelligent Systems and Applications, 01, 49-61. Published Online December 2014 in MECS (http://www.mecs-press.org/). DOI: 10.5815/ijisa.2015.01.05.
Ayu, Mutiara B.,H.Irwan Budiman and Andi Farmadi. (September 2015). Penerapan K-Optimal Pada Algoritma k-NN untuk Prediksi Kelulusan Tepat Waktu Mahasiswa Program Studi Ilmu Komputer FMIPA UNLAM Berdasarkan IP Sampai Dengan Semester 4. Kumpulan jurnaL Ilmu Komputer (KLIK) ISSN: 2406-7857. Volume 02, No.02.
Handjaratie,Lillyan. (2015). Prediction And Data Mapping of Students Of Engineering Faculty, Universitas Negeri Gorontalo Using Data Mining.
Hanief Muhamad M., Metri Annisa, Narendi Muhandri and Kadarsyah Suryadi. (2009). Prediksi Masa Studi Sarjana Dengan Artificial Neural Network. Internetworking Indonesia Journal. Vol.1/No.2.
Hartanto,David H.,Seng Hansun. (Juni 2014). Implementasi Data Mining dengan Algoritma C4.5 untuk Memprediksi Tingkat Kelulusan Mahasiswa. ULTIMATICS, Vol. VI, No. 1 | ISSN 2085-4552.
Mu’aris Khoirul. (2015). Komparasi Pemodelan Data Menggunakan C4.5 Dan C4.5 Berbasis Particle Swarm Optimization Untuk Memprediksi Kelulusan Mahasiswa.
Nursalim, Suprapedi and H.Himawan. (April 2014). Klasifikasi Bidang Kerja Lulusan Menggunakan Algoritma K-Nearest Neighbor. Jurnal Teknologi Informasi, ISSN 1414-9999. Volume 10 Nomor 1.
Nuqson Masykur Huda. (2010). “Aplikasi Data Mining Untuk Menampilkan Informasi Tingkat Kelulusan Mahasiswa”, Semarang.
Prabowo. (2012). Aneka Teknik, Piranti dan Penerapan Data Mining : Studi Kasus Peramalan Harga Saham Industri Telekomunikasi Berbasis Jaringan Saraf Tiruan. Modul Perkuliahan Universitas Budi Luhur.
Ricky, Ade Rozzaqi. (Juni 2015). Naïve Bayes dan Filtering Feature Selection Information Gain untuk Prediksi Ketepatan Kelulusan Mahasiswa. Jurnal Informatika UPGRIS Volume 1.
Downloads
Published
Issue
Section
License
Penulis mengirimkan naskah dan pengertian bahwa jika diterima untuk proses dipublikasi, hak cipta dari artikel tersebut akan diberikan kepada jurnal ilmiah teknologi informasi asia. Jurnal ilmiah teknologi informasi asia (Jitika) dan Lp2m Stmik Asia Malang sebagai penerbit jurnal, komponen Hak cipta mencakup hak untuk mereproduksi dan mengirimkan artikel dalam semua bentuk dan media, termasuk cetak ulang, foto, mikrofilm, dan reproduksi serupa lainnya, serta terjemahannya.
Jurnal ilmiah teknologi infomasi asia, dan Lp2m Stmik Asia Malang, beserta jajaran para redaksi berusaha keras untuk memastikan bahwa tidak ada data, opini, atau pernyataan yang salah atau menyesatkan ketika dipublikasikan di jurnal Jitika, dengan kondisi apapun, isi artikel dan iklan yang diterbitkan di Jurnal ilmiah teknologi infomasi asia adalah murni merupakan tanggung jawab masing-masing penulis dan pengiklan. Pengguna situs web ini akan dilisensikan dengan menggunakan materi dari situs web ini setelah Lisensi Internasional Creative Commons Attribution 4.0. Tidak ada biaya yang dibebankan. Silakan gunakan materi yang sesuai.
Anda bebas untuk:
Bagikan - salin dan sebarkan materi dalam media atau format apa pun.
Adaptasi - remix, transformasikan, dan bangun berdasarkan materi untuk tujuan apa pun, bahkan secara komersial.
Pemberi lisensi tidak dapat mencabut kebebasan ini selama Anda mengikuti ketentuan lisensi