Analisis Klasterisasi Penyakit Malaria Menggunakan Metode K-Means di Indonesia
DOI:
https://doi.org/10.32815/jitika.v18i1.991Kata Kunci:
Clustering, Penyakit Malaria, K-Means, Davies-Bouldin Indexs Clustering, Malaria, K-Means, Davies-Bouldin IndexsAbstrak
Malaria merupakan penyakit berbahaya dan berpotensi fatal di Indonesia. Penyebaran dan penularan penyakit malaria terjadi dengan sangat cepat. Tujuan dari penelitian ini adalah untuk mengidentifikasi cluster di negara bagian berdasarkan intensitas kasus malaria. Pada penelitian ini diterapkan metode K-Means pada proses clustering dengan menggunakan nilai K=2, K=3, dan K=5. Artinya, mengikuti K=2 dengan nilai indeks Davies-Bouldin sebesar 0,033, K=3 memiliki nilai indeks Davies-Bouldin sebesar 0,034, dan K=5 memiliki nilai indeks Davies-Bouldin sebesar 0,262. Hasil penelitian menunjukkan bahwa penggunaan K-Means dengan K=2 menghasilkan cluster terbaik dengan nilai indeks Davies-Bouldin terendah (0,033). Hal ini dapat membantu pemerintah merencanakan tindakan pencegahan yang lebih efektif di berbagai provinsi di Indonesia pada tahun-tahun mendatang. Oleh karena itu, penelitian ini memberikan kontribusi penting terhadap upaya pengendalian malaria untuk mengurangi kejadian malaria dan dampak kesehatan masyarakat di Indonesia.
Unduhan
Referensi
[2] Y. Yohannes, S. Devella, and K. Arianto, “Deteksi Penyakit Malaria Menggunakan Convolutional Neural Network Berbasis Saliency,” JUITA J. Inform., vol. 8, no. 1, p. 37, 2020, doi: 10.30595/juita.v8i1.6671.
[3] Karmila, H. S. Tambunan, Sumarno, and A. P. Windarto, “Penerapan Data Mining K-Means dalam Mengelompokkan Kasus Penyakit Malaria Berdasarkan Provinsi dengan Aplikasi RapidMiner,” Reg. Dev. Ind. Heal. Sci. Technol. Art Life, pp. 31–40, 2017, [Online]. Available: https://ptki.ac.id/jurnal/index.php/readystar/article/view/4/pdf (05 Juni 2020).
[4] E. Sari and R. A. Syakurah, “Analisis Manajemen Pelatihan Kader Malaria Pada Populasi Suku Anak Dalam Di Kabupaten Musi Rawas Utara,” J.Abdimas Community Heal., vol. 4, no. 1, pp. 01–08, 2023, doi: 10.30590/jach.v4n1.582.
[5] S. Sindi, W. R. O. Ningse, I. A. Sihombing, F. I. R.H.Zer, and D. Hartama, “Analisis Algoritma K-Medoids Clustering Dalam Pengelompokan Penyebaran Covid-19 Di Indonesia,” J. Teknol. Inf., vol. 4, no. 1, pp. 166–173, 2020, doi: 10.36294/jurti.v4i1.1296.
[6] Y. Bete, D. Santos, R. Lani, A. Ewal, and B. J. Lenggu, “Menentukan Titik Rawan Malaria Di Provinsi Nusa Tenggara Timur Menggunakan Metode K-Means Clustering,” vol. 1, no. 4, 2023.
[7] A. M. Sroyer, S. A. Mandowen, and F. Reba, “Analisis Cluster Penyakit Malaria Provinsi Papua Menggunakan Metode Single Linkage Dan K-Means,” J. Nas. Teknol. dan Sist. Inf., vol. 7, no. 3, pp. 147–154, 2022, doi: 10.25077/teknosi.v7i3.2021.147-154.
[8] A. F. Zohra, S. Anwar, A. Fitri, and M. H. Nasution, “Klasifikasi Wilayah Provinsi Aceh Berdasarkan Tingkat Kerentanan Kasus Malaria Tahun 2015 – 2018,” J. Kesehat. Lingkung. Indones., vol. 18, no. 1, p. 25, 2019, doi: 10.14710/jkli.18.1.25-33.
[9] Y. Nurohmah, R. Mayasari, and B. Nurina Sari, “Optimalisasi Performa K-Means Clustering Dengan Pca Dalam Analisis Tingkat Kemiskinan Di Jawa Barat,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 3, pp. 1657–1665, 2023, doi: 10.36040/jati.v7i3.6884.
[10] R. Ranjawali, A. C. Talakua, and R. T. Abineno, “Clustering Stunting Pada Balita Dengan Metode K- Means Di Puskesmas Kanatang,” SATI Sustain. Agric. Technol. Innov., pp. 80–92, 2023, [Online]. Available: https://ojs.unkriswina.ac.id/index.php/semnas-FST/article/view/587/324.
[11] E. Febrianty, L. Awalina, and W. I. Rahayu, “Optimalisasi Strategi Pemasaran dengan Segmentasi Pelanggan Menggunakan Penerapan K-Means Clustering pada Transaksi Online Retail Optimizing Marketing Strategies with Customer Segmentation Using K-Means Clustering on Online Retail Transactions,” J. Teknol. dan Inf., vol. 13, no. September, pp. 122–137, 2023, doi: 10.34010/jati.v13i2.
File Tambahan
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2024 Suastika Yulia Riska

Artikel ini berlisensi Creative Commons Attribution 4.0 International License.
Setelah diterima untuk publikasi, penulis mengalihkan hak cipta artikel mereka kepada Jurnal Ilmiah Teknologi Informasi Asia. Ini mencakup hak untuk mereproduksi, mentransmisikan, dan menerjemahkan materi dalam bentuk atau medium apa pun.
Sementara dewan redaksi berusaha memastikan keakuratan, mereka tidak bertanggung jawab atas isi artikel atau iklan. Tanggung jawab sepenuhnya berada pada penulis dan pengiklan masing-masing.
Materi di situs web dilisensikan di bawah Creative Commons Attribution 4.0 International License (CC BY 4.0). Di bawah lisensi ini, pengguna bebas untuk berbagi dan menyesuaikan materi untuk tujuan apa pun, termasuk penggunaan komersial, asalkan persyaratan lisensi terpenuhi. Kebebasan ini tidak dapat dicabut oleh pemberi lisensi dalam kondisi tersebut.