Penentuan Topik Judul Tugas Akhir Mahasiswa Menggunakan Fuzzy Inference System Tsukamoto

Penulis

  • R. Ananda Kristian STMIK Asia Malang
  • Ida Wahyuni STMIK Asia Malang

DOI:

https://doi.org/10.32815/jitika.v12i1.223

Kata Kunci:

fuzzy inference system, judul, topik, Tsukamoto, tugas akhir

Abstrak

At the end of the study, every student at all levels of public and private universities is required to complete the final project as a condition of graduated students. In the process of final work is not uncommon students experience many difficulties to determine the topic and research title. Therefore it takes a method that can be used to assist students in choosing the topic of the final project in accordance with the value of the courses obtained. Fuzzy Inference System (FIS) Tsukamoto is one method that can be used for decision making with many attributes or criteria. Therefore, in this study used FIS Tsukamoto to determine the topic of the final assignment of students. The attributes used as input criterion are the preliminary final course subject value of Decision Support System (SPK), Artificial Intelligence (AI), Image Processing and Pattern (PCP), Computer Network 1, Computer Network 2, Network Security, Data Mining and Expert System. There are 4 output topics titles final titles used are Intelligent System, Computer Networking, Bio Informatic and Decision Support System (SPK). By using the value data will be modeled method to determine the topic of the final project in accordance with the value obtained. Testing is done by comparing the ranking of predictions with the actual data rank on 100 student value data using Spearman rank correlation test. Spearman rank correlation value of test result that is equal to 0,998. If viewed from the Spearman rank correlation table the results are categorized very well.

Unduhan

Data unduhan belum tersedia.

Referensi

Budianita, E., & Arni, U. D. (2015). Penerapan Learning Vector Quantization Penentuan Bidang Konsentrasi Tugas Akhir ( Studi Kasus : Mahasiswa Teknik Informatika UIN Suska Riau ). CoreIT, 1(2), 85–89. Retrieved from ejournal.uin-suska.ac.id/index.php/coreit/article/download/.../1114

Kusumadewi, S., & Purnomo, H. (2004). Aplikasi Logika Fuzzy Untuk Pendukung Keputusan. Jakarta: Graha Ilmu.

Mahendra, D., & Azizah, N. (2016). Implementasi Fuzzy Inference System Tsukamoto Untuk Penentuan Topik Tugas Ahir. Jurnal SIMETRIS, 7(1), 337–344.

Rosyidi, A., Sugiarto, L., & Rihastuti, S. (2016). Fuzzy Inference System ( Fis ) Metode Mamdani Untuk. Seminar Nasional Teknologi Informasi, Bisnis Dan Desain 2016, 1–6.
Sari, N. R., & Mahmudy, W. F. (2015). Fuzzy Inference System Tsukamoto Untuk Menentukan Kelayakan Calon Pegawai. Seminar Nasional Sistem Informasi Indonesia, (November), 2–3.

Wahyuni, I., & Mahmudy, W. F. (2017). Rainfall Prediction in Tengger-Indonesia Using Hybrid Tsukamoto FIS and Genetic Algorithm. Journal of ICT Research and Applications, 11(1), 38–54. http://doi.org/10.5614/itbj.ict.res.appl.2017.11.1.3

Wahyuni, I., Mahmudy, W. F., & Iryani, A. (2016). Rainfall Prediction in Tengger Region Indonesia Using Tsukamoto Fuzzy Inference System. 1st International Conference on Information Technology, Information Systems and Electrical Engineering, ICITISEE 2016, 16, 130–135. http://doi.org/10.1109/ICITISEE.2016.7803061

Wahyuni, I., & Utaminingrum, F. (2016). Error Numerical Analysis for Result of Rainfall Prediction Between Tsukamoto FIS and Hybrid Tsukamoto FIS with GA. The 8th International Conference on Advanced Computer Science and Information Systems (ICACSIS), 16, 365–372. http://doi.org/10.1109/ICACSIS.2016.7872721

Unduhan

Diterbitkan

2018-03-27