Pengembangan Model Jaringan Syaraf Tiruan untuk Memprediksi Jumlah Mahasiswa Baru di PTS Surabaya (Studi Kasus Universitas Wijaya Putra)
DOI:
https://doi.org/10.32815/jitika.v12i1.213Kata Kunci:
jaringan syaraf tiruan, prediksi, backpropagation, fungsi basis radialAbstrak
Jaringan Syaraf Tiruan (JST) dan data time series dapat digunakan untuk metode peramalan dengan baik. Jaringan Syaraf Tiruan adalah suatu metode yang prinsip kerjanya diadaptasi dari model matematika pada manusia atau syaraf biologi. Jaringan syaraf dikarakteristikkan oleh; (1) pola koneksi diantara neuron (disebut arsitektur), (2) menentukan bobot dari koneksi (disebut training atau learning), dan (3) fungsi aktifasi. Tujuan penelitian adalah mendapatkan arsitektur jaringan syaraf tiruan yang terbaik, membandingkan dua metode Jaringan Syaraf Tiruan Backpropogation dengan metode Jaringan Syaraf Tiruan Fungsi Basis Radial (RBF). Penelitian ini merupakan penelitian dengan menggunakan data yang sebenarnya (true experimental). Penelitian ini dilaksanakan di Universitas Wijaya Putra Surabaya, dengan memakai data kedua yang diperoleh dari tahun 2012 sampai dengan 2016. Hasil penelitian menunjukkan adanya perbedaan antara metode JST RBF dengan metode JST Backpropagation, diperoleh indeks statistik JST RBF, MAE= 0,0074, RMSE=0, 0096, error=12,6532 %. Indeks statistik JST Backpropagation, MAE= 0,2129, RMSE=0, 2752, error=13,3217 %.
Unduhan
Referensi
Han, J., Kamber,M., dan Pei, J. (2012), Data Mining Concepts and Techniques, Morgan Kaufmann Publishers, Waltham.
Huang, W., Foo, S. (2002). Neural network modeling of salinity variation in Apalachicola River. Water Research, 36, 356–362.
Irawan, M.I., Syaharuddin, Utomo, D.B., dan Mustikarukmi, A. (2013). Intelligent Irrigation Water Requirement System Based on Artificial Neural Networks and Profit Optimization for Planting Time Decision Making of Crops in Lombok Islands. Journal of Theoretical and Applied Information Technology, 58(3), 657-671.
Kurt, A., Oktay. A. B. (2010). Forecasting air pollutant indicator levels with geographic models 3 days in advance using neural networks. Expert Systems with Applications, 37, 7986-7992. doi:10.1016/j.eswa.2010.05.093.
Ye, S. (2012). RMB Exchange Rate Forecast Approach Based on BP Neural Network. Physics Procedia, 33, 287 – 293. doi:10.1016/j.phpro.2012.05.064.
Wang, Y., Niu, D., Ji, L. (2012). Short-term power load forecasting based on IVL-BP neural network technology. Systems Engineering Procedia, 4, 168 – 174. doi:10.1016/j.sepro.2011.11.062.
File Tambahan
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Setelah diterima untuk publikasi, penulis mengalihkan hak cipta artikel mereka kepada Jurnal Ilmiah Teknologi Informasi Asia. Ini mencakup hak untuk mereproduksi, mentransmisikan, dan menerjemahkan materi dalam bentuk atau medium apa pun.
Sementara dewan redaksi berusaha memastikan keakuratan, mereka tidak bertanggung jawab atas isi artikel atau iklan. Tanggung jawab sepenuhnya berada pada penulis dan pengiklan masing-masing.
Materi di situs web dilisensikan di bawah Creative Commons Attribution 4.0 International License (CC BY 4.0). Di bawah lisensi ini, pengguna bebas untuk berbagi dan menyesuaikan materi untuk tujuan apa pun, termasuk penggunaan komersial, asalkan persyaratan lisensi terpenuhi. Kebebasan ini tidak dapat dicabut oleh pemberi lisensi dalam kondisi tersebut.